
Reviewing Oppenheimer et al. - Why do Internet
Services Fail, and What Can Be Done About It?

Matthias Beyer and Julian Ganz
Faculty of Computer Science

Hochschule Furtwangen
Robert-Gerwig-Platz 1

78120 Furtwangen

Abstract—In this paper, we review “Why Do Internet Services
Fail, and What Can Be Done About It?” by Oppenheimer et al.

I. INTRODUCTION

In 2003, Oppenheimer et al. published a paper titled “Why
Do Internet Services Fail, and What Can Be Done About It?”
[1] where they examine more than 500 user-visible service
failures from three large-scale Internet services.

Note that, in this context, the services analyzed were proba-
bly large scale at the time. However, in 2003, nearly 15 years
ago, the scale of services was probably rather low compared
with today. For example, many services (e.g. “Facebook”[2]
and “Youtube”[3]) did not exist back then.

Although they state that 100% availability can not be guar-
anteed, they conclude in five points how failure rates could be
minimized. Oppenheimer et al. also suggest a world-readable
failure database as well as more, industry-wide research in the
field of system reliability as well as recovery benchmarking
would greatly improve system availability and maintainability
for everyone.

In this paper we review their approach and findings, how
the failures were analyzed and whether their results are rep-
resentative.

In the first part of this paper we summarize what the dataset
Oppenheimer et al. used looked like, how their approach for
examining the dataset was and what they found. In the second
part we review their approach and findings. We conclude with
an overall impression of their paper.

II. OPPENHEIMERS’ (ET AL.) DATA

Oppenheimer et al. worked with three services. These
services are hosted in a geographically distributed manner.
Each site is build from three tiers: One load-balancing tier,
one stateless front-end tier and one backend tier. The back-end
tier is responsible for persisting data and making it available
to the front-end tier. The front-end tier may cache or queue
data, but not persist it.

Each service was categorized into one of the following
types:

• An Online service portal.
Load balancing is achieved via client cooperation. The
front-end tier is responsible for online services like e-
mail, newsgroups and, in this case, for a web proxy

service. The service was deployed to Solaris SPARC and
x86 machines [1, pp. 1 f.].

• A service were read actions were the majority of access,
called ReadMostly.
Load Balancing is achieved via DNS redirection. The
front-end tier is responsible for locating the data on the
back-end machine(s) and routing it to clients. The service
was deployed to x86 machines running an open-source
operating system. [1, pp. 1 f.].

• A Content hosting service.
Load balancing is achieved via client cooperation. The
front-end tier is responsible for locating the data on the
back-end machine(s) and routing it to clients. The service
was deployed to x86 machines running an open-source
operating system. [1, pp. 1 f.].

The front-end software of all three sites is developed by the
service provider. The back-end software of the Online service
is not developed by the service provider of the site, but the
back-end software of the ReadMostly and the Content services
is (see Table I).

All in all, Oppenheimer et al. had
• approx. 207 million hits per day
• more than 3000 machines for approx 20 sites which are

served to clients
• 501 component failures
• 107 services failures

recorded from these three services [1, p. 2].
The data was fetched from a 3 to 7 month study.

III. OPPENHEIMERS’ (ET AL.) APPROACH

Each failure report was categorized according to the sup-
posed root cause1: each failure report was assigned a “cause”

1The authors noted that the root cause itself may be caused by an underlying
flaw of some sort.

TABLE I: Custom written Software in Services

Custom Software
LB Font-end Back-end

Online
ReadMostly
Content



and a “location” from a predefined list. For cause, the list
contained the following classes:

• node hardware
• network hardware
• node software
• network software
• environment
• operator error
• overload
• unknown
For location, the list contained:
• front-end node
• back-end node
• network
• unknown
After categorization, the number of component and service

failures were counted for each combination of cause and loca-
tion for each of the three services. Because of categorization
difficulties and ambiguities, some combinations were merged
together for some services. For example, Internet Service
Provider (ISP) related outages were often assigned the cause
“unknown” and the location “network”.

Additionally, for each source-location category, an average
Time To Repair (TTR) was calculated from the TTRs provided
by the individual reports in a category. The authors note that in
the context of their paper, the TTR refers to the time between
the registration of the failure until normal operation is achieved
again.

Based on the relative number of occurrences of different
failures, a number of measurements for avoiding failures are
evaluated. For example, the number of failures which could
have been prevented with a measurement were counted and
compared to the cost of the measurement.

IV. OPPENHEIMERS’ (ET AL.) FINDINGS

Overall, Oppenheimer et al. found out, that the majority of
component failures were caused by Operator failure via main-
taining failures rather than by faulty bug fixes. Also, only few
of the failures were caused by the backend infrastructure of the
respective services. For the Content and Online services, 21%
and 13% of the analyzed component failures led to system
failures. In case of the Online and Content services, the service
failures were mainly caused by the frontend infrastructure
(more than two thirds) and in case of the ReadMostly service,
the network infrastructure was the main source of service
failure. In all cases only few failures were not categorized
in either Frontend-, Backend- or Network-failures.

For the service failure time to repair, Oppenheimer et al.
found, that

[. . . ] operator errors often take significantly longer
to repair than do other types of failures; [. . . ]

[1, chapter 3.3]. These values can, as they state, be misleading.
If an operator assigns a low priority to a failure, the TTR can
be significantly longer than it would be with a high priority
assigned to the failure. They also note that this does not depend

on the failure alone, but also on the context the failure appears
in.

Oppenheimers et al. findings show that the average TTR for
the Content service is significantly higher for backend failures
than for the other types of services. They also show that
failures in the system of the Online service take approximately
the same time to repair independent of they context they appear
in. The ReadMostly service takes few hours to repair in relation
to the others.

Using the mitigation techniques, Oppenheimer et al. list, 26
failures alone could have been mitigated or entirely avoided
in the Online service context by applying Online correctness
testing, a technique for actively testing components for correct-
ness. Also, 12 failures could have been mitigated or avoided
by exposing software and hardware failures to a monitoring
system more intensively.

V. REVIEW: OPPENHEIMERS’ ET AL. APPROACH

The overall approach seems reasonable for identifying tech-
niques for avoiding a large fraction of service failures with as
little effort as possible. However, we found a few details of
the reasoning rather unsound.

For example, reports from three services were analyzed.
Each service was described through its characteristics and
architecture. Seemingly to obfuscate the services from which
the data was taken, each service was termed by a name
corresponding to the “class” of the service (Online, Content,
ReadMostly). This resulted in reasoning based on classes of
services, with each class being populated by only one service.
Thus, it appeared that the reasoning would apply to any service
of that class, when the statistics only apply to one specific one.

This could have been prevented by using a larger data
set. However, since every single report had to be reviewed
manually, a larger set of reports would have also driven the
effort for the analysis.

Oppenheimer at al. determined not only failure counts and
percentages of component failures which turned into service
failures but also average TTRs. However, without the indica-
tion of the standard error or derivations, the averages provided
are of little significance for the discussion. Mere averages
cannot be used for arguing in favor for counter measurements
if they only prevent or avoid a fraction of the failures.

For example, consider a countermeasure preventing half of
the failures of a certain category. If the measurement only
prevents easy-to-fix failures with a low TTR, the overall down-
time may only be reduced marginally. It is thus unsurprisingly
that the average TTRs were only used to indicate that

operator errors often take significantly longer to
repair than do other types of failures[.]

While this statement is still based on unsound statistics,
Oppenheimer at al. proceed discussing counter-measures in
order to reduce the number of component failures rather
than the overall service down-time. A number of selected
techniques are discussed and evaluated based on an estimate
of the number of failures which could have been prevented
using a specific technique.



Apparently, only a subset of the failures were analyzed. It
was not stated how those failures were selected or why the
evaluation was only performed on some subset. However, since
the evaluation was performed manually, one may guess that
the reason for the selection was the reduction of effort.

Overall, while the approach does seen reasonable, the results
would doubtlessly be of greater quality with a larger data set
and more man-power. However, at the time, the amount of
data accessible to the researchers may have been limited. Also,
even if the researchers had access to a larger data set, the time
available for performing the manual evaluation might have
been limited.

VI. REVIEW: OPPENHEIMERS’ ET AL. FINDINGS

Although the overall findings of Oppenheimer et al. are not
surprising - surely Operator is a great source of service failure
- some details are rather surprising.

For example, Oppenheimer et al. found that in the context of
the ReadMostly service, the majority of failures were caused
by the network infrastructure rather than by the backend
infrastructure.

Another interesting point Oppenheimer et al. make, is that
backend failures are significantly harder to repair than frontend
failures. They also state that failures in different domains take
more time to repair than in others. This statement might be
misleading, though. As stated in V, normalizing services by
their class is a suspect approach, as one might get the im-
pression that findings apply to all instances of a certain class.
Thus, we want to relativise Oppenheimers statements: They
found that, for the services for which they examined failure
databases, the service in the Online class had almost equal
TTR for both backend, frontend and network infrastructure.
This was not the case for the ReadMostly and Content class
services.

This also becomes obvious from the evaluation of possible
counter-measures. Oppenheimer et al. state that some of the
counter-measures are already in place in some services. This
statement alone shows that the results are very specific to
the certain services analyzed. It also shows that the analy-
sis focused on additional counter-measures which could be
employed in order to improve the situation –from a 2003
perspective. Hence, we would take their findings with a grain
of salt.

All in all we can state that their findings are, to some extend,
still valuable. However, the value may have shifted somewhat
from a recommendations for deployment of new techniques to
motivating techniques which may now, in 2017, be common
in large-scale services.

VII. CONCLUSION

Overall we can conclude that the structure of the paper
Oppenheimer et al. presented is not optimal. The data, analysis
and findings are mixed in the chapters rather than structured
clearly. Also, they suggest world-readable failure databases
and benchmarks, but fail to provide a solid explanation why
these approaches seem valuable.

Oppenheimer et al. present their figures in a very detailed
manner. They explicitly state how to interpret each found value
and what to keep in mind during reviewing, which we liked.

On the other hand, some of their statistics are missing
some critical values which would help the reader a lot for
estimating the impact of the respective figure. For example,
their mitigation statistics do not state how much failures could
not be avoided, which yields the statistic rather useless. If
three of 200 failures could’ve been avoided by the respective
mitigation technique, the technique would be rather useless
compared to if it would have avoided three of eight failures.

We also recognized some things missing in the paper Op-
penheimer et al. published. We consider the tooling to deploy
software to production a critical point in an evaluation of
TTR. For example, the whole topic of software configuration
management[4], which got more and more attention since
Oppenheimer et al. published their paper, is never mentioned
in the paper. Tools like ansible, puppet, chef or nix(ops)[5]
(which was developed after Oppenheimer et al. published their
paper) are designed to make maintainance of a system easy[6]
and even reproducible[7]. With decent configuration manage-
ment tools in place, an operator-failure could be rolled back
without effort (and, with certain tools, even atomically[8]).

We appreciated that Oppenheimer et al. showed examples
for operator failure, such as component failures that led to
loss of a failure-database in case of the Online infrastructure
as well as human error which also led to loss of the complete
failure database of the Content infrastructure. These simple,
but disastrous failures show how important the topic of failure
management is. Current failures show that Oppenheimer et al.
addressed a problem which is of high importance and which
is still not solved yet. For example, the incident at gitlab [9]
in early 2017 shows the criticality of this topic today.

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?” in Proceedings of
the 4th Conference on USENIX Symposium on Internet Technologies
and Systems - Volume 4, ser. USITS’03. Berkeley, CA, USA:
USENIX Association, 2003, pp. 1–1. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1251460.1251461

[2] The Sunday Indian. [Online]. Available: http://www.thesundayindian.
com/en/photo-albums/241/

[3] J. Graham. (2005) Video websites pop up, invite postings. [Online].
Available: https://usatoday30.usatoday.com/tech/news/techinnovations/
2005-11-21-video-websites x.htm

[4] A. Dearle, “Software deployment, past, present and future,” in 2007
Future of Software Engineering, ser. FOSE ’07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 269–284. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.20

[5] E. Dolstra, M. Bravenboer, and E. Visser, “Service configuration man-
agement,” in Proceedings of the 12th international workshop on Software
configuration management. ACM, 2005, pp. 83–98.

[6] D. Hall, Ansible Configuration Management. Packt Publishing Ltd, 2013.
[7] E. Dolstra and A. Hemel, “Purely functional system configuration man-

agement.” in HotOS, 2007.
[8] S. van der Burg, E. Dolstra, and M. de Jonge, “Atomic upgrading of

distributed systems,” in Proceedings of the 1st International Workshop
on Hot Topics in Software Upgrades. ACM, 2008, p. 8.

[9] gitlab.com. (2017) Gitlab.com database incident. [Online]. Available:
https://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/

http://dl.acm.org/citation.cfm?id=1251460.1251461
http://dl.acm.org/citation.cfm?id=1251460.1251461
http://www.thesundayindian.com/en/photo-albums/241/
http://www.thesundayindian.com/en/photo-albums/241/
https://usatoday30.usatoday.com/tech/news/techinnovations/2005-11-21-video-websites_x.htm
https://usatoday30.usatoday.com/tech/news/techinnovations/2005-11-21-video-websites_x.htm
http://dx.doi.org/10.1109/FOSE.2007.20
https://about.gitlab.com/2017/02/01/gitlab-dot-com-database-incident/

	Introduction
	Oppenheimers' (et al.) data
	Oppenheimers' (et al.) approach
	Oppenheimers' (et al.) findings
	Review: Oppenheimers' et al. approach
	Review: Oppenheimers' et al. findings
	Conclusion
	References

