Time-series based solution using InfluxDB

Julian Ganz
Department of Computer Science
Furtwangen University
Furtwangen, Germany
Julian.Ganz @hs-furtwangen.de

Abstract—In this paper, we will describe the implementation
of two queries using a time series database. Time series are
data structures optimized for storing records along with a time
stamp, as well as allowing fast access to records in a given time
range. We will discuss a time series based data model and our
implementation of the two queries, to show the advantages in
both storage size and access latency. We show that one of the
queries can be optimized using an aggregation.

Index Terms—databases, time series

I. INTRODUCTION

We were given the task to implement two semi-complex
queries with timestamp based data. It was suggested to use
the time series capable database IBM® Informix®. However,
implementing a solution with IBM® Informix® proved to
be unnecessarily complicated. We took a different approach
and switched to a newer time series based database called
InfluxDB. After a brief introduction to time series, we will
propose a time series based data model. Furthermore, we will
provide an implementation of the aforementioned queries.

II. TIME SERIES

Collecting data and events like server metrics, application
monitoring, network load, sensor data, trades, etc. over time
is done with time series. Time series can occur in regular and
irregular form. Regular time series data is used for data which
is accumulated in fixed intervals. Irregular time series are data
points of events triggered by users or external services [[1, p.
2 f].

Time series data is thus sequential data with a timestamp
attached, indicating when the value was recorded [2| p. 25].

Traditional relational database systems do not scale well
with large amounts of time series data, especially if, for
example, one billion data points per day are stored, aggregated
and queried. This is why there are so called time series
databases, that are optimized to work with this form of data
[2].

A time series database, which is inherently also a NoSQL
database,

can (i) store a record that consists of a times-
tamp, value, and optional tags, (ii) store multiple
records grouped together, (iii) can query for records
and (iv) can contain time ranges in a query.
[3l p. 25]
Also, a time series database can store multiple values per
timestamp.

Matthias Beyer
Department of Computer Science
Furtwangen University
Furtwangen, Germany
Matthias.Beyer @hs-furtwangen.de

Christian Plotzky
Department of Computer Science
Furtwangen University
Furtwangen, Germany
Christian.Plotzky @hs-furtwangen.de

III. DATA MODEL

For both queries, we require fast access to the word counts
for a specific word in a specific time range. Hence, we define a
“words” table mapping each word to a time series containing
the word counts for each document at some point in time.
Naturally, the words are chosen as primary keys, implicitly
making them unique among the table. Since we are only
interested in ranges of dates, one day is sufficient as the
temporal resolution for the time series.

Compared to both the timestamp and the count, storing a
document URL requires a relatively large amount of data.
On top of that, URLs are expected to be redundant, since
a document will typically contain many words and thus its
URL will end up in multiple time series. Nonetheless, in order
to keep the approach as simple as possible, we chose to not
outsource the URLs but store them alongside the time series
data.

IV. IMPORTING DATA

Importing the time series data from the input schema
displayed in listing [I] into InfluxDB involved a short script
(listing [2) to prepare the data accordingly to the InfluxDB
import format.

Source Code 1: Input Data

word|/date|url|count|

Source Code 2: Converter Script
require ’'csv’
CSV.foreach (ARGV[O],
do |row|
= "word=\"#{row[O]}\""
Date.parse(row[l]) .strftime ("%s")
"url=\"#{row[2]}\""
"value=#{row[3]}"

ts "ms, #{w} #{u},#{v} #{dp"

1)

w

d

u =
v
Pu
end

V. QUERIES

The first of the two queries to implement returns the overall
occurrences of a specific, given word for each day in a time

range. This data can be easily retrieved from the data model
described in [section 111}

Since the time series implementation is presumably opti-
mized for this kind of query El, the query is naturally fast.

Source Code 3: Query 1

SUM (value) AS count
wcuret .ms

SELECT
FROM
WHERE
AND
AND

4

word=’"google
time > 1409702/

The second query returns the top £ URLs for a given time
range where a specific word occurs. This can be implemented
using the “TOP()” aggregate function in InfluxDB, which
returns the top N values of a field where the field must
be of type “int64” or “float64”.

Source Code 4: Query 2

SELECT url,word, TOP (value, 10)
FROM wcuret.ms

WHERE time > 1409702400000000000
AND time < 1440028800000000000

Similar as in the first query, the relevant time series and the
specified range of data points can be queried in a short amount
of time. As it does not introduce large overhead, we can also
return the word for each data point in this query.

Note that the returned list of rows is not sorted. If a sorted
list is required, application code must sort the result of the
query, as InfluxDB is not capable of performing this.

VI. AGGREGATION

In query 1, an aggregation could be made for the word
counts for each word per day. In this case, one is neither
interested in the URLs queried that day nor in a single word
count.

Hence, an aggregation in advance would speed up the query
using an additional table holding the pre-aggregated data.
That table would be nearly identical in structure to the table
described in although lacking the “url” field. The
data for this table would be obtained by summing up all word
counts for a specific word and day.

Performing query 1 is then a simple matter of selecting the
specified range in the time series corresponding to the specified
word. Using a table of this schema less data needs to be read
due to the fact that, for a specific day, at most one entry exists
and the “documents” field would not be present.

As a result, query 1 would be expected to complete in
a shorter amount of time. However, the aggregation means
additional effort beforehand. Also, in a scenario where both
queries are performed, the use of an additional table could hurt
performance due to reduced effectiveness of the buffer pool
or cache misses. Either way, ad-hoc measurements show that

le.g. by ensuring the data points are stored in sequence on disk

query 1 can be executed on a small machine (4 virtual cores, 4
GiB RAM) in almost no time (0.012 sec, where the starting of
the commandline application for querying the database takes
approximately 0.010 sec).

VII. CONCLUSION

Our implementation of the two queries makes use of the
time series concept and presents an example of how to work
with time series.

We have explained why the concept of time series theo-
retically has two advantages: Firstly the given data consumes
less disk space and secondly it allows for faster querying of
time series data than relational or non-time-series databases.
For further practical analysis of how effective InfluxDB does
this, one would have to run similar queries against relational
or other non-time-series databases and compare the results.

Time series are not a new scientific achievement, but rather
a concept which has been used for decades in statistics and
other realms [4} S. 1]. Time series problems require time series
database capabilities, which InfluxDB does provide.

ACKNOWLEDGMENT

We want to thank Prof. Dr. L. Piepmeyer for his patience
and help during our evaluation of IBM Informix.

REFERENCES
[

—

P. Dix, “Why time-series matters for metrics, real-time and sensor data,”

jun 2016. [Online]. Available: https://www.influxdata.com/wp-content/

uploads/2016/05/Time- Series-Tech-Paper-6-6.pdf]

[2] T. Dunning and E. Friedman, “Time series databases,” 2015.

[3] A. Bader, “Comparison of time series databases,” Diplomarbeit, Univer-
sity of Stuttgart, Universititsstrale 38, D-70569 Stuttgart, jan 2016.

[4] R. S. Tsay, “Time series and forecasting: Brief history and future

research,” Journal of the American Statistical Association, vol. 95, no.

450, pp. 638-643, 2000. [Online]. Available: http://www.tandfonline.

com/doi/abs/10.1080/01621459.2000.10474241

https://www.influxdata.com/wp-content/uploads/2016/05/Time-Series-Tech-Paper-6-6.pdf
https://www.influxdata.com/wp-content/uploads/2016/05/Time-Series-Tech-Paper-6-6.pdf
http://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10474241
http://www.tandfonline.com/doi/abs/10.1080/01621459.2000.10474241

	Introduction
	Time series
	Data model
	Importing data
	Queries
	Aggregation
	Conclusion
	References

